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Abstract—The evolution of next-generation communication
systems demands that wireless networks possess the attributes
of awareness, adaptability, and intelligence. Wireless sensing
techniques provide valuable information about the radio signals
in the environment. However, hostile threats, such as jamming,
eavesdropping, and manipulation, pose significant challenges to
these networks. This paper presents a comprehensive study
on an innovative RF-jamming detection testbed designed to
combat these threats. The testbed leverages the spectral scan
capability of wireless network interfaces and the jamming toolkit,
JamRF, to accurately detect and mitigate jamming attacks. This
study outlines the methodology used to develop the testbed,
along with a detailed discussion of the rationales behind the
design decisions. The accompanying RF jamming dataset, which
includes experimentally measured data, is expected to promote the
development and evaluation of jamming detection and avoidance
systems. As a proof-of-concept, we trained five different machine
learning algorithms and achieved a jamming detection accuracy of
over 90% for all algorithms. The proposed RF jamming dataset
and testbed represent a significant advancement in the fight
against malicious interference in wireless networks.

Index Terms—jamming; dataset; spectral scan; machine learn-
ing; software defined radio; experimental data.

I. INTRODUCTION

Ensuring the security of communication networks is of
utmost importance. While wired networks have been targeted
by various types of attacks, the widespread adoption of wireless
networks in recent years has made them a prime target for
malicious activities. However, advances in technology have
made wireless networks more affordable and easier to deploy,
making them a popular choice for many organizations. Despite
their popularity, wireless networks are known to be more
susceptible to security attacks compared to wired networks
due to the nature of wireless links [1]]. The openness of the
wireless medium makes it susceptible to both intentional and
unintentional interference, with interference from neighboring
cells being a prevalent form of unintentional interference in a
wireless communication system. On the other hand, intentional
interference refers to malicious attacks on a victim receiver
that is not equipped to defend itself [2]. One such attack is
the jamming attack, which actively transmits high energy to
disrupt reliable data transmission or reception and can severely
impact system performance [3].
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To mitigate the impact of jamming attacks, researchers in
academia, industry, and government, have dedicated signifi-
cant effort to developing jamming detection and avoidance
techniques. To facilitate these efforts, various datasets in
different formats have been made available to the public
to aid in the creation of jamming detection and avoidance
systems. Pufial et al. [4] created a comprehensive dataset
that includes multiple trace sets of 802.11p communications
under different Radio Frequency (RF) jamming conditions.
The RF jammer’s operation patterns were analyzed, including
constant, reactive, and pilot jamming. The observations were
conducted in an anechoic chamber and outside in two key
outdoor environments: an open area with a straight road and
a densely populated building environment. Whelan et al. [3]]
collected a comprehensive dataset that comprises logs from a
regular flight of an unmanned aerial vehicle (UAV) as well as
one in which the UAV is subjected to global positioning system
(GPS) spoofing and jamming. The experiment utilized a signal
generator to precisely locate the UAV in Shanghai, China. GPS
spoofing was achieved using the HackRF software-defined
radio (SDR) and the GPS-SDR-SIM application to transmit
the UAV’s coordinates. GPS jamming was accomplished by
broadcasting white Gaussian noise using the HackRF.

Despite the usefulness of WiFi traces data for gaining insight
into the state of network channels, it does not furnish a
comprehensive depiction of the utilization and status of the
entire spectrum. Moreover, the traces obtained are in packet
form, representing samples at the network layer, necessitating
a packet sniffer for analysis. To address the limitation of WiFi
traces data in providing a comprehensive view of spectrum
utilization and conditions, various monitoring systems have
been proposed and made accessible in the literature. Prominent
among these datasets include the Google Spectrum [6] for
television white-space measurements, the IBM Horizon project
[7] that presents a decentralized architecture for sharing Internet
of Things (IoT) data, and Microsoft’s Spectrum Observatory
[8l], which enables spectrum sensing through the use of high-
end sensors. The focus of Google’s Spectrum and Blue Horizon
on specific use cases results in their limited scope, while the
high cost of the necessary sensing nodes impedes widespread
deployment of Microsoft’s Spectrum Observatory. In [9} [10],
ElectroSense was proposed as a flexible and cost-effective
testbed that leverages low-cost sensors to collect and analyze
spectrum data through a crowd-sourcing paradigm. The primary
goal of the initiative is to sense the full spectrum in diverse
locations worldwide and provide processed spectrum data to
users seeking a comprehensive understanding of spectrum
utilization.

In contrast to earlier efforts, in this paper, we present
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an experimental testbed for performing spectrum scanning
using the in-built Wireless Local Area Network (WLAN)
Interface Cards (NICs) of communication devices to collect
data in different environments. Furthermore, using the testbed,
we employ JamRF a jamming toolkit developed in [3]],
to synthesize different jamming scenarios and generate an
RF jamming dataset. We outline the methodology used for
developing the testbed and discuss the reasons for the choices
made during its development to facilitate future improvements
in the experimental exploration of jamming dataset production
based on spectral scans. Our measurement data is neatly
labeled into categories, which can be utilized in RF jamming
analysis. This dataset can assist researchers in wireless security
to conduct experimental evaluations of existing and future
jamming detection and avoidance systems. Additionally, we
provide an example scenario that can be used to construct
experiment-driven jamming and avoidance systems and suggest
avenues for further study using this dataset.

The remainder of this paper is structured as follows. The
design of the proposed experimental setup is outlined in
Section [[I} including the underlying principles and practical
implementation of the testbed. The sample dataset obtained
from the testbed is presented in Section [l An example
application of the dataset is demonstrated in Section [[V] The
paper concludes in Section [V]

II. TESTBED DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of the testbed used for the measurement and analysis of
the jamming signal generated by the JamRF toolkit [3l].
Section[[T-A] provides a comprehensive discussion of the testbed
design, while Section details the implementation of the
design, including the usage of a Raspberry Pi Compute Module
4, a WiFi Radio for Spectral Scan, and a HackRF Jammer.

A. Testbed Design Based on JamRF

The proposed experimental design utilizes the JamRF toolkit
[3] to conduct a jamming attack on all available 2.4/5SGHz
channels. The constant jammer configuration with Gaussian
noise jamming signal is employed. The experiments are
performed in three environments: an RF isolation chamber, a
laboratory, and an office. To avoid disrupting the transmission
activities of other users, the jamming attack is carried out
inside the RF isolation chamber. The attack is executed
using a HackRF with JamRF, and the captured signals are
recorded at the receiver side using a Compute Module 4
(CM4) with a mounted Qualcomm Atheros device (QC9880)
in background mode scanning. The receiver is positioned at
different distances in {20, 40,60} cm from the jammer, and
the jamming transmit power varies at {0,5,10} dBm. For
each distance and power combination, Fast Fourier Transform
(FFT) samples are collected for approximately three seconds,
and the process is repeated ten times with a 10-second pause
between each iteration. In three scenarios, no jamming attack
is conducted. These scenarios are low activity in the laboratory,
high activity in the office, and no activity in the RF isolation
chamber. The collected measurement data is organized and
labeled into categories for ease of RF jamming analysis.

~Isolation Chamber =

Fig. 1: Overview of the Spectral Scan Testbed.

B. Implementation of the Testbed

The implementation process of the testbed is depicted in
Fig. [T} This section presents a comprehensive overview of the
experimental details and measurement methods involved in
our implementation. In particular, we describe the types of
WLAN interfaces considered in the experiments and specify the
parameters of the spectral scan testbed. Furthermore, we discuss
the hardware and software components utilized in constructing
the testbed.

1) Raspberry Pi Compute Module 4: The CM4 is a raspberry
Pi 4 compact form factor primarily designed for embedded
applications. It features a quad-core ARM Cortex-A72 proces-
sor and dual video output, among other interfaces. For this
experiment, we utilize the CM4 Input-Output (IO) board, which
serves as a development system for the CM4 and an embedded
board for end products. The IO board enables the construction
of systems using off-the-shelf components such as HATs and
PCle cards, including those for NVMe, SATA, networking, or
USB. The major user connectors are conveniently located on
one side for ease of enclosure design.

2) WiFi Radio for Spectral Scan: In our experimental
testbed, we utilized two commercially available wireless
modules, namely, the Qualcomm Atheros QCA9880 and
Doodle Labs NM-DB-3U radio. The Doodle Labs NM-DB-3U
is based on the Qualcomm AR958x chipset and supports IEEE
802.11n and 3x3 MIMO. It is an industrial-grade module
that interfaces via mini PCle and is supplied by Doodle
Labs. The Qualcomm Atheros QCA9880, on the other hand,
is a dual-band 3x3 MIMO 802.11ac/abgn chipset that is
also interfaced via mini PCle. Both of these modules are
capable of conducting spectral scans, as they are equipped
with the ATH10k (drivers/net/wireless/ath/ath10k/spectral.c)
and ATHO9k (drivers/net/wireless/ath/ath9k/common-spectral.c)
wireless drivers, respectively, which are based on the mac80211
softmac architecture.

3) HackRF Jammer: In our experimental setup, we utilized
the HackRF One, a wideband SDR half-duplex transceiver
developed and manufactured by Great Scott Gadgets [11]. With
the ability to both receive and transmit signals, this device
supports frequencies ranging from 1 MHz to 6 GHz, with a
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maximum output power of up to 15 dBm, depending on the
band. The HackRF One includes a sub-miniature version A
(SMA) antenna port, SMA clock input and output ports, and
a USB 2.0 port, making it compatible with popular software-
defined radio applications such as GNU Radio and SDR.
As outlined in Section [l we employed JamRF, a jamming
toolkit that implements various types of jammers and jamming
strategies using the HackRF One and GNU radio [3].

Note that the ATH10k and ATH9k driver configurations do
not automatically enable spectral scan by default. This required
the specific activation of the CONFIG_ATH10K_SPECTRAL
and CONFIG_ATH9K_COMMON_SPECTRAL features in
the kernel configuration. To capture spectral data, an open-
source tool (https://github.com/govindsi/utilities/blob/main/
scripts/spectral_scan.sh) was utilized under various configu-
rations (https://github.com/govindsi/utilities/tree/main/config/
AP).

III. DATA SET ORGANIZATION AND CHARACTERISTICS

In this section, we provide a comprehensive overview of the
data set accompanying this article. Section presents the
architecture of the Spectral Scan system used to generate the
data set. Section elaborates on the features obtained from
the FFT data. Section provides a visual representation of
the Spectral Scan results, including an illustration of the impact
of jamming and jammer configuration on the RF spectrum.
Finally, Section categorizes the data set based on the type
of measurement and the parameters used in each experiment.

A. Spectral Scan System Architecture

The architecture of the spectral scan system is presented in
Fig.[2] This system integrates multiple communication layers to
facilitate spectral scanning functionality. The WPA_supplicant
and hostapd components are utilized to configure the User
Media Access Control (UMAC) mode, which can be set to
access point, mesh, station, or independent basic service set
modes. The spectral scan classifier is employed to classify
the spectrum conditions, while the FFT_eval block is based
on an open-source spectral scan pre-processing tool (https:
//github.com/simonwunderlich/FFT_eval). The tool’s userspace
program provides a graphical representation of the Fast Fourier
Transform (FFT) samples collected from Atheros NICs, thereby
facilitating the development of open-source spectrum analyzers
for Qualcomm Atheros AR92xx and AR93xx-based chipsets.
The ATH10k/ATH9k SPECTRAL_SCAN_CTL driver is used
for spectral scan configuration, with the spectral data being
captured via the DEBUGFS interface and transferred to the
WiFi firmware through the Peripheral Component Interconnect
(PCI) transport.

B. Spectral Scan Features

The Spectral Scan is a feature offered by some commercial
off-the-shelf (COTS) wireless chipset products, which enables
the collection of FFT data from the physical layer through
software-controlled means. The Spectral Scan can be divided
into two categories: high-latency and low-latency scans. The
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Fig. 2: Overall Architecture of the Spectral Scan System.

FFT data collected from the spectrum can be stored in a binary
file format, which can then be post-processed to create an open-
source spectrum analyzer or interference classifier. The binary
data file contains eight primary features: frequency, noise, max
magnitude, total gain in dB, base power in dB, relative power in
dB, average power in dB, and received power in dBm. These
features can be extracted from the Spectral Scan datagram
header. The received power in dBm feature is calculated using
the received power equation specified in the Qualcomm Atheros
AR92xx and AR93xx chipset documentation. Following the
parsing process, the data is stored as a comma-separated values
(CSV) file, which can then be utilized for training machine
learning (ML) algorithms. The CSV file provides time-series
data derived from the in-phase-quadrature (IQ) samples binary
file. The binary and CSV data files have been preserved and
made accessible for reference in conjunction with this paper.

C. Visualization of Spectral Scan Results

In Figs. Ba and [3b] we present visualizations of the received
power (dBm) plotted against frequency. Figure [3a] shows that
when the spectral scan is conducted in an isolation chamber,
the highest received signal power is 1 dBm. In an office
environment, due to the router’s distance from the receiver,
moderate ambient RF is observed with a maximum received
power of 4 dBm. In a laboratory setting with high RF ambiance
near the router, a high-intensity received power of 10 dBm is
observed.

The impact of jamming on RF spectrum is presented
in Fig. Bb] The graph shows the relationship between the
received power (dBm) and frequency when different jamming
configurations are in place. When the jamming is performed at
5200 MHz with a jamming power of 10 dBm and a distance
of 20 cm between the jammer and the receiver, it is evident
that the received power reaches around 30 dBm at 5200 MHz.
However, when the jammed frequency is set to 5280 MHz,
the jammer is positioned 60 cm away from the receiver, and
the jamming power is decreased to 0 dBm, the received power
reaches a maximum of approximately 0 dBm at 5280 MHz.
The figure also highlights that the jamming effects can be seen
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Fig. 3: Visualization of received power (dBM) over frequency
for jamming and normal (non-jammed) scenarios in Unlicensed
National Information Infrastructure (U-NII)-1 and U-NII-2
portions of the spectrum.

at surrounding frequencies and decreases as the distance from
the jammed frequency increases.

D. Categorization of Dataset

This section presents the categorization of the dataset
accompanying the article. Based on the type of measurement,
such as device type, device bandwidth, and spectral scan
method, experiments from approximately 30 different con-
figurations have been selected and grouped into four categories
as described in Section [[I The dataset comprises five sub-
directories, each named according to three parameters in the
format of spectral_scans_A_B_C, where A represents the
device type (either QCA9880 or doodlelabs), B represents the
scan bandwidth (either ht20, ht40, or vht80), and C represents
the mode of scan (background, chanscan, or manual).

Each sub-directory contains over a thousand samples, with
resents the environment in which the data was collected (either
chamber, lab, or office), B represents the jammed frequency,
C represents the distance between the jammer and receiver
(either 20 cm, 40 cm, or 60 cm), D represents the jammer
transmit power (0 dBm, 5 dBm, or 10 dBm), and E represents
the transmission number, starting from 1 and indicating the
temporal order of the transmissions. For example, the file
“samples_chamber_2412MHz_40cm_5dbm_3.bin” indicates the
third transmission with a jamming power of 5 dBm, a distance
of 40 cm between the jammer and receiver, a jammed frequency
of 2412 MHz, and data collected in an RF isolation chamber.
For each configuration, ten transmissions were conducted.

IV. JAMMING DETECTION

In this section, we present a machine learning-based approach
for determining the exposure of a transmitter and a receiver
to RF jamming attacks. This jamming detection problem is
framed as a binary classification task, with samples classified
as either normal or jamming. Normal samples are acquired
from laboratory, office, and isolation chamber environments
without jamming, while jamming samples are collected from the
isolation chamber with the JamRF toolkit turned on. To achieve
high detection accuracy, it is crucial to carefully consider
various aspects, such as the selection of appropriate input
features, measurement and collection of data, generation of
a large dataset, and application of efficient algorithms for
training, validation, and testing of the model. In this paper, we
evaluate the performance of five different classifiers. Although
our approach to the problem is supervised, it may be valuable to
investigate the application of unsupervised anomaly detection
approaches, such as ARCADE [12]]. This possibility will be
the focus of future research efforts.

The five classifiers evaluated in this paper were Multi-Layer
Perceptron (MLP), Support Vector Machines (SVM), RAndom
Forest (RAF), eXtreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Machine (LightGBM). MLP is a
feedforward neural network with at least three node layers,
including an input layer, hidden layer, and output layer, and
utilizes the supervised learning approach of backpropagation.
SVM is a supervised learning model that classifies fresh
samples into two categories through a non-probabilistic binary
linear classifier and is capable of performing non-linear classifi-
cation via the kernel trick. RF is an ensemble learning approach
that utilizes many decision trees for classification, regression,
and other tasks and has improved performance but decreased
interpretability compared to a single decision tree. XGBoost
is an optimized gradient-boosted decision tree solution that
prioritizes speed and performance and often outperforms a
single decision tree in terms of accuracy while compromising
interpretability. LightGBM is a scalable, distributed gradient
boosting system that supports multiple algorithms, including
RAF, and differs in tree construction compared to XGBoost.

A. Pre-processing

Here we describe the steps to prepare the data before training
the classifiers. Firstly, the feature “freq” was dropped as it
is deemed irrelevant to the task of jamming detection on a
particular (isolated channel). Additionally, due to missing and
noisy data, the feature “rcvpwr_dBm” was also dropped. The
time series data for each channel was then transformed into a
single row by applying seven descriptive statistics, including
minimum, maximum, mean, standard deviation, 75th percentile,
50th percentile, and 25th percentile, resulting in 49 features.
Finally, the data were separated into two groups; one consisting
of jamming data and the other consisting of data from isolated
chambers (low interference), offices (moderate interference),
and laboratories (high interference). These groups were used to
train a binary classifier. However, the four independent classes
were kept separate for the purpose of training a multi-class
classifier.
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TABLE I: Jamming detection performance in binary classification with normal vs. jamming, where normal class comprises low,
moderate, and high interference samples. The results are in the format mean (£ std.) obtained over 10-folds.

Recall (%)

F1-Score (%)

Accuracy (%)

Inference Speed

(KHz)

Algorithm Number of Samples Precision (%)
MLP 629 94.33 (£0.47)
SVM 629 99.0 (£0.00)
RAF 629 100.00 (£0.00)

XGBoost 629 98.67 (£1.25)

LGBM 629 99.00 (+0.00)

96.00 (0.00)
99.00 (£0.00)
100.00 (£0.00)
99.67 (£0.47)
100.00 (£0.00)

95.67 (£0.94)
99.00 (£0.00)
100.00 (£0.00)
99.00 (£0.00)
99.00 (£0.00)

97.00 (£0.00)
100.00 (40.00)
100.00 (£0.00)
99.67 (+£0.47)
99.67 (£0.47)

414.52 & (21.0)
107.68 & (4.30)
54.95 + (5.33)
277.97 £ (37.4)
409.60 & (4.60)

TABLE II: Performance comparison of jamming detection for multi-class classification. The results are present in the format of

mean (£ std.) obtained from 10-folds.

Recall (%)

F1-Score (%)

Accuracy (%)

Inference
Speed (KHz)

56.67 (£11.8)
88.67 (£6.13)
37.67 (£4.71)
98.67 (£0.94)
67.00 (£3.27)

65.67 (£6.13)
77.33 (£3.77)
56.67 (£4.71)
95.67 (£0.47)
70.67 (£3.77)

90.33 (£0.94)

382.63 (+10.9)

95.00 (£0.00)
91.00 (£0.00)
94.00 (£0.00)
100.00 (£0.00)
95.00 (£0.00)

92.00 (£0.00)
92.00 (£0.00)
95.00 (£0.00)
100.00 (£0.00)
95.00 (£0.00)

98.00 (£0.00)

32.82 (£0.96)

97.00 (£11.8)
96.00 (£0.00)
94.67 (£0.94)
100.00 (£0.00)
96.33 (£0.47)

95.33 (£1.24)
95.67 (£0.47)
96.33 (£0.47)
100.00 (£0.00)
96.33 (£0.47)

99.00 (£0.00)

44.08 (£11.6)

94.33 (£0.94)
94.00 (£1.41)
95.33 (£3.40)
100.00 (£0.00)
95.67 (£0.47)

93.67 (£0.94)
93.67 (£1.89)
96.67 (£1.70)
100.00 (£0.00)
95.33 (£0.47)

98.67 (£0.47)

53.09 (£3.73)

Algorithm Interference Type N;:;’;; SOf Precision (%)
Low Interference 43 84.00 (£11.3)

Moderate Interference 46 67.67 (£1.89)

MLP High Interference 51 96.67 (£2.36)
Jamming 489 93.00 (£1.41)

Macro Average 629 82.67 (4+8.26)

Low Interference 43 89.00 (£0.00)

Moderate Interference 46 93.00 (£0.00)

SVM High Interference 51 96.00 (£0.00)
Jamming 489 100.00 (£0.00)

Macro Average 629 95.00 (£0.00)

Low Interference 43 93.67 (£0.94)

Moderate Interference 46 95.33 (£0.94)

RAF High Interference 51 98.00 (£0.00)
Jamming 489 100.00 (£0.00)

Macro Average 629 96.33 (£0.47)

Low Interference 43 93.00 (£1.64)

Moderate Interference 46 93.33 (£2.49)

XGBoost High Interference 51 98.00 (£0.00)
Jamming 489 100.00 (£0.00)

Macro Average 629 95.33 (£0.47)

Low Interference 43 91.00 (£2.83)

Moderate Interference 46 92.00 (£2.83)

LGBM High Interference 51 98.00 (£0.00)
Jamming 489 100.00 (£0.00)

Macro Average 629 95.67 (£1.25)

95.00 (£0.00)
96.00 (£0.00)
93.33 (£4.11)
100.00 (£0.00)
96.33 (£0.94)

93.00 (£1.41)
94.00 (£1.41)
95.67 (£2.05)
100.00 (£0.00)
95.67 (+1.25)

98.67 (£0.47)

265.43 (£38.1)

B. Training and Tuning

The ML-based classification algorithms are trained and
evaluated using a measured dataset. After the pre-processing
step, the training split of the processed dataset is utilized to
train and fit the models. The performance of the models is
then tested and presented using the testing dataset, which
contains normal/interference and jamming data. To achieve
high performance, a random search hyper-parameter tuning
technique with 10-fold cross-validation is employed.

The hyperparameters of the MLP classifier are optimized to
obtain the optimum model. In the case of binary classification,
the best hyperparameters include Adam solver, an initial
learning rate of 0.0001, a batch size of 128, [, regularization
factor of 0.001, a maximum iteration of 300, and two hidden
layers with thirty and fifteen units respectively. For multi-class
classification, the solver, initial learning rate, and maximum
iteration are similar to those for binary classification. However,
the batch size is 128, the [, regularization factor is 0.0001, and
there are two hidden layers with 30 and 15 units, respectively.

In the SVM classifier, three major hyperparameters must be
tuned for optimal performance: kernel, C, and ~y. The optimal
hyperparameters for binary classification were an RBF kernel,
C = 20, and v = 0.0001. For multi-class classification, the
kernel is also RBF with C' = 35 and v = 0.001. For the
random forest classifier, six hyperparameters were adjusted.
The ideal hyperparameters for binary classification include
200 estimators, minimum samples leaf of 1, maximum depth
of 5, minimum samples split of 2, maximum features set to
\/n where n is the number of features, and bootstrap set to
false. In the case of multi-class classification, the maximum
features and bootstrap values are identical to those for binary
classification. However, the number of estimators is 100, the
minimum leaf samples is 2, the maximum depth samples is
30, and the minimum split samples is 4.

C. Results and Discussions

Table [I] compares the performance of different machine
learning algorithms (MLP, SVM, RAF, XGboost, and LGBM)
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for binary-class classification of jamming. The evaluation
metrics used are precision, recall, Fl-score, accuracy, and
inference speed (KHz). To handle imbalanced datasets, it
is important to calculate these metrics separately for each
class. This allows for a more nuanced understanding of
the performance of the algorithms, as the imbalance in the
dataset can affect the overall accuracy and make it misleading.
Moreover, although in our data, the majority class is jamming,
but in reality it is the minority. This means that it’s crucial to
classify jamming activity correctly, as classifying it as normal
interference has serious consequences. The precision, recall,
and Fl-score metrics provide a more complete picture of
the performance of the algorithms, highlighting the trade-off
between correctly classifying the samples of each class and
the number of false positive or false negative predictions. For
binary-class classification, the results showed that all algorithms
performed well, with precision and recall ranging from 94%
to 100% and F1-scores ranging from 95% to 100% for all
classes. In terms of accuracy, RAF and SVM exhibit the highest
performance achieving an accuracy of 100%. On the other
hand, Table [l compares the performance of the same machine
learning algorithms for multi-class classification of jamming
and low, moderate, and high interference. The results showed
that RAF performed best with a 96.33% F1-score and an
accuracy of 99%. MLP showed a lower performance, with F1-
scores ranging from 56% to 96% and an accuracy of 90.33%.

In addition to accuracy, the speed of inference has also been
studied. To this end, over 2000 samples from the dataset were
generated and the average inference speed per second was
calculated. When the algorithms were run on a 32GB RAM
CPU with a dual-core process Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz 2.59 GHz, the MLP classifier was the fastest
among the five classifiers, with an average inference speed
of 414.52 KHz, and 382.63 KHz for the binary and multi-
classification scenarios respectively. The inference speed of
the algorithms varied similarly to the binary-class results, with
MLP being the fastest and RAF the slowest. In conclusion,
all algorithms tested showed good performance in jamming
detection for both binary and multi-class classifications, with
RAF showing the best results in terms of accuracy and F1-score.
The inference speed of the algorithms also varied, with MLP
being the fastest. Overall, the LGBM offers the best trade-off
between accuracy and speed for both binary and multi-class
classification scenarios.

V. CONCLUSIONS

In this study, we described the design and implementation
of a radio frequency jamming detection testbed using the
Wireless Spectral Scan dataset. The testbed design encompasses
various technical and practical considerations, and we have
provided a detailed overview of these considerations in the
article. Furthermore, we presented a set of experimental results
and analyzed the performance of five machine learning-based
classifiers for jamming detection. The results indicate that
the random forest classifier offers high accuracy in detecting
jamming attacks, making it a promising approach for anti-
jamming techniques. The findings of this study have important

implications for the research community. Firstly, the presented
dataset and results can inspire further research in developing
new anti-jamming techniques. Secondly, the practical insights
gained from the implementation of the testbed can assist in
the development of new radio frequency jamming datasets
and generation testbeds for future applications. In future work,
we plan to demonstrate additional use cases for the dataset,
including deep anomaly detection and deep reinforcement
learning methods. These efforts are aimed at advancing state
of the art in jamming detection and mitigating the negative
impact of jamming attacks in radio frequency communication
systems.
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